Revisiting TESLA in the Quantum Random Oracle Model

نویسندگان

  • Erdem Alkim
  • Nina Bindel
  • Johannes A. Buchmann
  • Özgür Dagdelen
  • Edward Eaton
  • Gus Gutoski
  • Juliane Krämer
  • Filip Pawlega
چکیده

We study a scheme of Bai and Galbraith (CT-RSA’14), also known as TESLA. TESLA was thought to have a tight security reduction from the learning with errors problem (LWE) in the random oracle model (ROM). Moreover, a variant using chameleon hash functions was lifted to the quantum random oracle model (QROM). However, both reductions were later found to be flawed and hence it remained unresolved until now whether TESLA can be proven to be tightly secure in the (Q)ROM. In the present paper we provide an entirely new, tight security reduction for TESLA from LWE in the QROM (and thus in the ROM). Our security reduction involves the adaptive re-programming of a quantum oracle. Furthermore, we propose parameter sets targeting 128 bits of security against both classical and quantum adversaries and compare TESLA’s performance with state-of-the-art signature schemes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TESLA: Tightly-Secure Efficient Signatures from Standard Lattices

Generally, lattice-based cryptographic primitives offer good performance and allow for strong security reductions. However, the most efficient current lattice-based signature schemes sacrifice (part of its) security to achieve good performance: first, security is based on ideal lattice problems, that might not be as hard as standard lattice problems. Secondly, the security reductions of the mos...

متن کامل

Random Oracles in a Quantum World

The interest in post-quantum cryptography — classical systems that remain secure in the presence of a quantum adversary — has generated elegant proposals for new cryptosystems. Some of these systems are set in the random oracle model and are proven secure relative to adversaries that have classical access to the random oracle. We argue that to prove post-quantum security one needs to prove secu...

متن کامل

Secure Identity-Based Encryption in the Quantum Random Oracle Model

We give the first proof of security for an identity-based encryption scheme in the quantum random oracle model. This is the first proof of security for any scheme in this model that requires no additional assumptions. Our techniques are quite general and we use them to obtain security proofs for two random oracle hierarchical identity-based encryption schemes and a random oracle signature schem...

متن کامل

Making Existential-unforgeable Signatures Strongly Unforgeable in the Quantum Random-oracle Model

Strongly unforgeable signature schemes provide a more stringent security guarantee than the standard existential unforgeability. It requires that not only forging a signature on a new message is hard, it is infeasible as well to produce a new signature on a message for which the adversary has seen valid signatures before. Strongly unforgeable signatures are useful both in practice and as a buil...

متن کامل

Improved identification protocol in the quantum random oracle model

Boneh et al. [6] proposed an identification protocol in Asiacrypt 2011 that is secure in the classical random oracle model but insecure in the quantum random oracle model. This paper finds that a constant parameter plays a significant role in the security of the protocol and the variation of this parameter changes the security greatly. Therefore, an improved identification protocol that replace...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017